Trane Commercial Systems 3600 Pammel Creek Road La Crosse, WI 54601-7599 TEL 608 787 3905 FAX 608 787 3005 Applications Engineering 19 February 2003 California Energy Commission Mr. Bill Pennington BPenning@energy.state.ca.us. Re: Development of Title 24 2005 Standard Dear Mr. Pennington: Only in February of 2003 has a draft of the possible changes to Title 24 for 2005 come to my attention. While many of the new requirements make sense there are some that should change. I list those in the table below. | Section | | Suggestion | Reason | |--|---|--|---| | | Requireme | | | | | nt | | 4- | | | boxes | | the payback is 1/8 th of that for a 1 hp motor. The payback for 1/3 hp is ok, also General Electric (the major provider of ECM's) only makes them down to 1/3 hp. | | Not in standard | Fan Pressure optimization for DDC/VAV systems | Add | Set point reset (fan pressure optimization) is required by ASHRAE 90.1-1999 (and 2001) for DDC VAV systems. The cost is minimal and the savings are significant if DDC is already installed | | 144.h.3 – Tower
Flow Turndown | Requiremen
t for all cells
to be run at
part load
condition | Put a limit on the number of cells that must be designed in this manner. | Very few cooling towers allow flow rates less than 30-40% even when designed for variable flow. If we have four cells in an application and dedicated condenser water pumps, each cell will only have 25% flow. While part "B" seems to indicate that the cell could be designed for 33% minimum flow, the actual requirement states that "all cells can be run in parallel" | | 144.i –
Limitation of
air-cooled
chillers | Systems
over 300
tons can
have
maximum
100 tons air-
cooled
chillers | Delete | This requirement seems to restrict trade Restricting to a maximum 100-ton air-cooled chiller essentially eliminates any air-cooled chillers above 100 tons from being sold. Without manufacturing plants being able to produce and sell larger chillers, the cost of air-cooled chillers 100 tons and smaller will rise and become much less economical. There are many applications where air-cooled chillers make economic sense for building owners. For example, schools that do not have maintenance staff to maintain cooling towers. | | Section | Requireme
nt | Suggestion | Reason | |-----------------------------|-----------------|--|--| | | | | Air cooled chillers with helical-rotary (screw) compressors receive extensive relief as ambient temperature (dry bulb) drops. Dry bulb drops much more quickly than wet bulb – especially in your climates. So systems that operate nights, nonsummer hours (September, October, etc.) etc. get extensive energy reduction from that drop in temperature. Economics and energy should be used by the design engineer on the specific application, not mandated by code. | | 144.j.2 – Chiller isolation | | Adjust the laste sentence to read: "Chillers that are piped in series shall be considered as one chiller." | There are many reasons chillers may be piped in series: Increased temperature differential To take advantage of an alternate fuel type (or heat recovered from e.g. a turbine) To enhance the chiller's capability to be loaded to recover heat from its condenser. | Regards, Mick Schwedler, PE Senior Principle Applications Engineer So having the *phrase "for the purpose of increased temperature differential"* is too limiting.